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RG & EFT for nuclear forces

• Low momentum interactions: 
  Using the RG to simplify the nuclear force for many-body calculations.

• Application of chiral perturbation theory to nuclear systems:
   How to apply perturbation theory to a non-perturbative problem?

• Three-nucleon forces: 
   importance of 3NF’s for the quantitative description of (light) nuclei 
   relation to low momentum interactions

ECT* school, Feb/March 2006
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Why are 3NF’s important for nuclear physics?

• e.g. the sensitivity of p-shell spectra & binding energies
  (here Green’s Function Monte Carlo results from  Pieper, Wiringa, Carlson et. al.)

•

•   p-shell spectra are sensitive to 3NF’s and
 3NF’s are necessary to describe them
 We want to understand the 3NF’s based on chiral EFT!



Higher order interactions

- Chiral interactions have been worked out to higher orders

                          also three-nucleon force (3NF) terms are predicted

- EFT confirms the expectation that NN forces >> 3N forces > 4N forces > ...

- For NN, the terms up to (Q/Λ)4 (=next-to-next-to-next-to-leading order=N3LO)
   have been worked out. 

- Starting from this order, one is able to achieve a description of the data 
    similar to the traditional interaction models (fitting 26 parameters).

- The fits of the counter terms have been performed for Λ ≈ 500 MeV.



Higher order interactions

Contributions to the NN potential:

Q0  (LO):  

Q2  (NLO): 

Q3 (NNLO):

Note: No contribution at Q1  and no counter terms at Q3 !
          In Q4 : new pion exchanges & counter terms up to D-waves

...

♦ ...

L
(0) Lagrangian
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3NF in EFT

At order Q3 , we find the first contributions of 3NF’s !

Q3 (NNLO):

Most vertices of 3NF also appear in NN diagrams and are related to other processes !



3NF in EFT

 Example: “c1, c3 and c4 terms” of the 

Q3 (NNLO):

These are important diagrams for the 3NF, and they are subleading contributions to NN 
and πN scattering.

How can we determine their strength ?

     1)  Fit to NN data:  long range part of the chiral interactions 
                                    + counter terms + NN data  
                                     phase shifts analysis + some constraints on ci
     2) Fit to phase shifts for high angular momenta (3F4)
 
     3) Fit to πN data 

L
(1) Lagrangian



3NF in EFT

• Each approach has some disadvantages, which constrains the accuracy.
But order of magnitude and signs are in agreement

• Determination from πN scattering and fit to NN data agree approximately:
   connection of subleading 2π-exchange and πN supported!

• but: some determinations are highly controversial, 
        sensitivity of the NN data is rather small,
        c1  is not extracted from NN data, but input to the analysis 

• A more accurate and independent determination is desirable!

       Long term goal: Determination from 3N data!

c1 c3 c4
NN phase shift analysis -0.76 -4.78 3.96
πN scattering (dispersion rel.) -0.81 -4.70 3.40
πN scattering (directly) -1.23 -5.94 3.47
NN pert. 3F4 -0.81 -3.40 3.40
NN potential fit to data -0.81 -3.20 5.40

✓
c1, c3, c4



3NF of EFT

the LEC c4 is ineffective in
3F4 such that differences in the

choices for c4 do not distort the picture in this partial wave.

This fact makes 3F4 special for the discussion of c3.

Figure 10 reveals that the chiral 2! exchange depends

most sensitively on c3. It is clearly seen that the Nijmegen

choice c3!"5.08 GeV"1 "21# leads to too much attraction,
while the value c3!"1.15 GeV"1, advocated in Ref. "41#,
is far too small $in terms of magnitude% since it results in an
almost vanishing 2!-exchange contribution—quite in con-
trast to the empirical NN facts, the dispersion-theoretic re-

sult, and the Bonn model.

One reason for the difference between the Nijmegen value

and ours could be that their analysis is conducted at N2LO,

while we go to N3LO. However, as demonstrated in Figs.

4–6, N3LO is not that different from N2LO and, therefore,

not the main reason for the difference. More crucial is the

fact that, in the Nijmegen analysis, the chiral 2!-exchange
potential, represented as a local r-space function, is cut off at

r!1.4 fm $i.e., it is set to zero for r&1.4 fm) "44#. This
cutoff suppresses the 2! contribution, also, in peripheral

waves. If the 2! potential is suppressed by phenomenology,

then, of course, stronger values for c3 are necessary, result-

ing in a highly model-dependent determination of c3. For

example, if we multiply all noniterative 2! contributions by

exp""(p2n#p! 2n)/'2n# with '(400 MeV and n!2, then
with c3!"5.08 GeV"1 we obtain a good reproduction of

the peripheral partial-wave phase shifts. Note that '
(400 MeV is roughly equivalent to a r-space cutoff of

about 0.5 fm, which is not even close to the cutoff used in

the Nijmegen analysis. In fact, the Nijmegen r-space cutoff

of r!1.4 fm is equivalent to a momentum-space cutoff '
(m! which is bound to kill the 2! exchange contribution

$which has a momentum-space range of 2m! and larger%. To
revive it, unrealistically large parameters are necessary.

The motivation underlying the value for c3 advocated in

Ref. "41# is quite different from the Nijmegen scenario. In

Ref. "41#, c3 was adjusted to the D waves of NN scattering,

which are notoriously too attractive. With their choice c3!
"1.15 GeV"1, the D waves are, indeed, about right,

whereas the F waves are drastically underpredicted. This

violates an important rule: The higher the partial, the higher

the priority. The reason for this rule is that we have more

trust in the long-range contributions to the nuclear force than

in the short-range ones. The !#2! contributions to the

nuclear force rule the F and higher partial waves, not the D

waves. If D waves do not come out right, then one can think

of plenty of short-range contributions to fix it. If F and

higher partial waves are wrong, there is no fix.

In summary, a realistic choice for the important LEC c3 is

"3.4 GeV"1 and one may deliberately assign an uncer-

tainty of $10% to this value. Substantially different values

are unrealistic as clearly demonstrated in Fig. 10.
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APPENDIX: DETAILS OF FOURTH-ORDER

CONTRIBUTIONS TO PERIPHERAL PARTIAL-WAVE

PHASE SHIFTS

The fourth order consists of very many contributions $cf.
Sec. III C and Figs. 2 and 3%. Here, we show how the various
contributions of fourth order impact NN phase shifts in pe-

ripheral partial waves. For this purpose, we display in Fig. 11

phase shifts for four important peripheral partial waves:

namely, 1F3 ,
3F3 ,

3F4, and
3G5. In each frame, the follow-

ing individual fourth-order contributions are shown.

$i% ci
2 graph, first row of Fig. 2, Eqs. $29% and $30%, de-

noted by ‘‘c2’’ in Fig. 11.

$ii% ci /MN contributions $denoted by ‘‘c/M’’%, second row
of Fig. 2, Eqs. $31%–$35%.

$iii% 1/Mn
2 corrections $‘‘1/M2’’%, rows 3–6 of Fig. 2, Eqs.

$36%–$42%.
$iv% Two-loop contributions without the terms propor-

tional to d̄ i $‘‘2-L’’%: Fig. 3, but without the solid square, Eqs.
$54%–$61%, but with all d̄ i)0.

$v% Two-loop contributions including the terms propor-
tional to d̄ i $denoted by ‘‘d’’ in Fig. 11%: Fig. 3, Eqs. $54%–
$61% with the d̄ i parameters as given in Table I.
Starting with the result at N2LO, curve $1%, the individual

N3LO contributions are added up successively in the order

FIG. 10. One- and two-pion-exchange contributions at fourth

order to the 3F4 phase shifts for three different choices of the LEC

c3. The numbers given next to the curves denote the values for c3 in

units of GeV"1 used for the respective curves $all other parameters
as in Table I%. For comparison, we also show the OPE contributrion
$OPE% and the result from !#2! exchange of the Bonn model

$Bonn%. Empirical phase shifts $solid dots and open circles% as in
Fig. 4.

CHIRAL 2! EXCHANGE AT FOURTH ORDER AND . . . PHYSICAL REVIEW C 66, 014002 $2002%

014002-13

3F4 partial wave receives visible contributions   
      from 2π-exchange 

and 

      is  perturbative!

Leading counter terms are  of order Q6 !

from Entem & Machleidt (2002)



3NF in EFT

c1, c3 and c4 terms are constrained

How can we determine the strength of the remaining two terms (D- and E-term)?

     1)  E-term: it is only related to nucleons, so we need to fit to e.g. 3N observable

     2) D-term: 
            a) pion production in NN scattering
                but: this has not been analyzed within this EFT yet.

            b) Fit to another few-nucleon observable    

(✓)

∝ cD ·

1

Λf3
π

∝ cE ·

1

Λf4
π



3NF in EFT

More specific:  today’s calculations were done with Idaho-N3LO

This insures the complete consistency of the NN force & 3NF.
Keep in mind that  the determination is not perfect.

The cutoff will be 500 MeV ≈ 2.5 fm-1.

Is this large enough for nuclei? 

Indication: How strong is the dependence of the 3N binding energy on Λ?

E(3H) changes by 40 keV out of 7.85 MeV, 
            when changes from Λ=500 MeV to Λ=600 MeV   (without 3NF)

c1 c3 c4
NN phase shift analysis -0.76 -4.78 3.96
πN scattering (dispersion rel.) -0.81 -4.70 3.40
πN scattering (directly) -1.23 -5.94 3.47
NN pert. 3F4 -0.81 -3.40 3.40
NN potential fit to data -0.81 -3.20 5.40
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3NF in EFT

• Here, we use the 3H and 4He binding energies to fix the strength of the 3NF counter 
terms

• we find two solutions that describe the 3N and 4N binding energies equally well
cD cE

3NF-A -1.11 -0.66
3NF-B 8.14 -2.02

3H
4He



3NF in EFT

This completes the nuclear chiral EFT interaction. 

Combination of N3LO NN interaction with N2LO 3NF ! 
More order by order calculations are necessary to confirm convergence.

Double check: Is the outcome for the 3NF contribution reasonable?

Again: check consistency with expectation values

3NF is Q3 contribution:  we expect                                      .

One finds an estimate of 1 MeV for 3H and 2 MeV for 4He ! 

〈H〉 = 〈T 〉 + 〈VNN 〉 + 〈V3NF 〉

VNN [MeV] V3NF [MeV] H [MeV]
3H -45 -0.83/-1.31 -8.48
4He 105 -4.1/-7.1 -28.3

V3NF = VNN ×
m3

π

Λ3



• 3NF can be investigated in      

- Nd scattering (only isospin T=1/2)
Many experiments have been performed.

Guided by calculations, one could identify observables that 
are sensitive to the 3NF structure.  

- 4N scattering (contributions of T=1/2 and T=3/2 channels)

predictions based on NN forces indicate that 3NF effects could be significant

- p-shell nuclei (contribution of T=1/2 and T=3/2 channels) 

binding energy generally require 3NF
more important: at least spectra seem to be sensitive to the structure of 3NF’s

Predictions for p-shell nuclei



• The chiral interactions slightly underbind 6Li and 7Li, 
which might be more pronounced for 3NF-B

• There is no indication for an increasing overbinding in the p-shell 

• 3NF-B increases radii, agreement with expt. is similar as the one for harder core 
interactions.    

Predictions for p-shell nuclei

6Li 7Li
E rp E rp

no 3NF 30.0 2.20 34.6 2.15
3NF-A 32.3 2.16 38.0 2.11
3NF-B 31.1 2.25 36.7 2.23

AV18+Illinois 2 32.3 2.39 38.9 2.25
AV18+Urbana 31.1 2.57 37.5 2.33

Expt. 32.0 2.43 39.2 2.27

(AV18 results from Pieper et al. PRC 64,014001)
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• Convergence for the spectra is better than for the binding energies

• The results show clearly deviating predictions for the two 3NF parameter sets

• Results prefer set 3NF-B for both nuclei

•

•

•

•

•

• Fine tuning of ci’s should be performed to find better binding energies.

Predictions for p-shell nuclei



3NF from EFT summary

-  High order chiral interactions have been developed, which describe the NN data    
   perfectly again.

-  Consistent 3NF’s are formulated and can be fitted to few-body data.

-  This chiral nuclear interaction model can be used to predict, e.g. p-shell nuclei.

-  The approach shows explicitly, how very different strongly interacting systems are 
    related to each other

- State of the art is the combination of N3LO NN interaction & N2LO 3NF:
    an order by order calculation is necessary to show rate of convergence.

- Strength of the subleading two-pion exchange? Uncertainty should be reduced.

- Soft interactions do describe p-shell nuclei quantitatively!    



RG for nuclear potentials

Idea for the combination of 3NF and vlowk’s:

We are able to evolve down the NN interaction to arbitrary small cutoffs in the NN 
system!

           Few-body observables become mildly cutoff dependent.

We are not able to evolve down interactions for the 3N system:

          -  It is hard, because we would require many 3N scattering solutions.
          -  At least starting from the phenomenological NN forces, we do not 
             have appropriate 3NF’s to start with.

What can we do?

Note: vlowk for small cutoffs is model independent!

          add 3NF based on chiral perturbation theory and 
          use the leading counter term to approximate RG
                  (exactly in the spirit of Peter Lepage’s lectures).



RG for nuclear potentials

actly on the Tjon line given by the phenomenological mod-
els.
As also seen in Fig. 2, even if a cutoff is chosen that leads

to a good description of the 3N binding energies, the 4N
binding energy deviates from experiment. Clearly, 3N or
higher-body forces must act for these values of the cutoff. In

the following, we construct a low-momentum 3N interaction

by fitting the leading chiral 3N force to Vlow k. For simplicity

we restrict ourselves to the Vlow k derived from the Argonne

v18 potential. The chiral 3N force to leading order contains a
long-range 2! exchange part, an intermediate range 1! ex-

change (D term), and a zero-range contact interaction (E
term), (see [11,12]). For the operator form and the definition
of the strength constants, we refer the reader to Eqs. (2) and
(10) in [12]. The interaction is regularized by exponential
cutoff functions of the form exp!!"p /"#8$ with the cutoff
taken from Vlow k. The very high exponent guarantees a very

sharp drop to zero at p=". The 2! exchange part is deter-

mined by strength constants ci, which we take from [21],
where they were obtained by a fit to NN data.The dimension-

less strength constants cD and cE were obtained from a fit to

the 3H and 4He binding energies. First, a relation between cD
and cE was established by requiring that the

3H binding en-

ergy of !8.482 MeV is described accurately. The resulting

dependence for various cutoffs is shown in Fig. 3. For small

cutoffs we obtain a linear relationship, which suggests that

the D and E terms are perturbative in this region. We have

checked explicitly and also for the c terms that these are

perturbative for "#2 fm!1. This could be useful for appli-
cations, where it is practically impossible to include the 3N

force into the dynamical equations, but a perturbative treat-

ment is feasible.

In Fig. 4, we show the eigenvalue $ of the Yakubovsky

equation for 4He versus cD. In all cases cE was chosen ac-

cording to Fig. 3. The binding energy of 4He agrees with the

experimental one of !28.3 MeV for $=1. In the considered
range for cD, we find a unique solution for the cutoff choices

up to "=1.9 fm!1. For "=2.5 fm!1, the relation of $ and cD
is strongly nonlinear and we find two solutions. We observed

a very similar behavior, when the N3LO chiral interaction of

[10] was augmented by the same 3N force. For "
=3.0 fm!1, we cannot describe the 3H and 4He binding ener-

gies simultaneously. For this cutoff, we choose cD=7.5, for

which $ is minimal and the binding energy is best described.
The resulting cD /cE pairs are compiled in Table I, where the

(!) indicates that the 4He binding energy is reproduced only
approximately as !28.8 MeV for "=3.0 fm!1, and (a) and
(b) label the two possible solutions for "=2.5 fm!1.
A very important task is to estimate the size of 3N forces

in a systematic way. We decided to calculate the expectation

values of the 2N and the different parts of the 3N interactions

and compare their magnitude. The results are summarized in

Table II. As a worst case scenario, we compare the maximum

of the individual 3N force terms to the 2N interaction for
4He. As expected from Fig. 3, for "#2 fm!1, all 3N parts

are perturbative. For these cutoffs, we obtain contributions of

4 %–10 %, which are comparable to 3N forces for phenom-

enological models [13,22]. For larger cutoffs, the 2! ex-

change contribution (c terms) grows rapidly, which is can-
celed by the E term. We take this as an indication that, in this

range, our ansatz for the 3N force is not reliable.

In summary, we have thoroughly assessed the size of 3N

forces in the Vlow k approach. Based on the Vlow k results for

the 3H and 4He binding energies, we found that the depen-

dence on the cutoff is not unnaturally large for "
%1.0 fm!1. This suggests that higher-body interactions are
small. We emphasize that the large cutoff range, for which

Vlow k is available, will enable similar studies for other low-

energy observables, e.g., all binding and excitation energies,

FIG. 3. (Color online) Relation between cD and cE obtained by
requiring that Vlow k augmented by the 3N force predicts the 3H

binding energy correctly.

FIG. 4. (Color online) Dependence of the eigenvalue $ of the

Yakubovksy equation on cD for various cutoffs. A deviation of $
!1=0.01 corresponds to a deviation of approximately 600 keV

from the experimental value.

TABLE I. Fit results for cD and cE for various cutoffs of the

Vlow k derived from the Argonne v18 potential [for (a), (b), and (!)
see text]. The strength of the 2! exchange part is determined by

c1=!0.76 GeV
!1, c3=!4.78 GeV

!1, and c4=3.96 GeV
!1 [21].

" "fm!1# cD cE

1.0 3.621 5.724

1.3 11.889 2.265

1.6 2.080 0.230

1.9 !1.225 !0.405

2.5"a# !0.560 !0.707

2.5"b# !3.794 !1.085

3.0(!) !7.500 !2.151
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actly on the Tjon line given by the phenomenological mod-
els.
As also seen in Fig. 2, even if a cutoff is chosen that leads

to a good description of the 3N binding energies, the 4N
binding energy deviates from experiment. Clearly, 3N or
higher-body forces must act for these values of the cutoff. In

the following, we construct a low-momentum 3N interaction

by fitting the leading chiral 3N force to Vlow k. For simplicity

we restrict ourselves to the Vlow k derived from the Argonne

v18 potential. The chiral 3N force to leading order contains a
long-range 2! exchange part, an intermediate range 1! ex-

change (D term), and a zero-range contact interaction (E
term), (see [11,12]). For the operator form and the definition
of the strength constants, we refer the reader to Eqs. (2) and
(10) in [12]. The interaction is regularized by exponential
cutoff functions of the form exp!!"p /"#8$ with the cutoff
taken from Vlow k. The very high exponent guarantees a very

sharp drop to zero at p=". The 2! exchange part is deter-

mined by strength constants ci, which we take from [21],
where they were obtained by a fit to NN data.The dimension-

less strength constants cD and cE were obtained from a fit to

the 3H and 4He binding energies. First, a relation between cD
and cE was established by requiring that the

3H binding en-

ergy of !8.482 MeV is described accurately. The resulting

dependence for various cutoffs is shown in Fig. 3. For small

cutoffs we obtain a linear relationship, which suggests that

the D and E terms are perturbative in this region. We have

checked explicitly and also for the c terms that these are

perturbative for "#2 fm!1. This could be useful for appli-
cations, where it is practically impossible to include the 3N

force into the dynamical equations, but a perturbative treat-

ment is feasible.

In Fig. 4, we show the eigenvalue $ of the Yakubovsky

equation for 4He versus cD. In all cases cE was chosen ac-

cording to Fig. 3. The binding energy of 4He agrees with the

experimental one of !28.3 MeV for $=1. In the considered
range for cD, we find a unique solution for the cutoff choices

up to "=1.9 fm!1. For "=2.5 fm!1, the relation of $ and cD
is strongly nonlinear and we find two solutions. We observed

a very similar behavior, when the N3LO chiral interaction of

[10] was augmented by the same 3N force. For "
=3.0 fm!1, we cannot describe the 3H and 4He binding ener-

gies simultaneously. For this cutoff, we choose cD=7.5, for

which $ is minimal and the binding energy is best described.
The resulting cD /cE pairs are compiled in Table I, where the

(!) indicates that the 4He binding energy is reproduced only
approximately as !28.8 MeV for "=3.0 fm!1, and (a) and
(b) label the two possible solutions for "=2.5 fm!1.
A very important task is to estimate the size of 3N forces

in a systematic way. We decided to calculate the expectation

values of the 2N and the different parts of the 3N interactions

and compare their magnitude. The results are summarized in

Table II. As a worst case scenario, we compare the maximum

of the individual 3N force terms to the 2N interaction for
4He. As expected from Fig. 3, for "#2 fm!1, all 3N parts

are perturbative. For these cutoffs, we obtain contributions of

4 %–10 %, which are comparable to 3N forces for phenom-

enological models [13,22]. For larger cutoffs, the 2! ex-

change contribution (c terms) grows rapidly, which is can-
celed by the E term. We take this as an indication that, in this

range, our ansatz for the 3N force is not reliable.

In summary, we have thoroughly assessed the size of 3N

forces in the Vlow k approach. Based on the Vlow k results for

the 3H and 4He binding energies, we found that the depen-

dence on the cutoff is not unnaturally large for "
%1.0 fm!1. This suggests that higher-body interactions are
small. We emphasize that the large cutoff range, for which

Vlow k is available, will enable similar studies for other low-

energy observables, e.g., all binding and excitation energies,

FIG. 3. (Color online) Relation between cD and cE obtained by
requiring that Vlow k augmented by the 3N force predicts the 3H

binding energy correctly.

FIG. 4. (Color online) Dependence of the eigenvalue $ of the

Yakubovksy equation on cD for various cutoffs. A deviation of $
!1=0.01 corresponds to a deviation of approximately 600 keV

from the experimental value.

TABLE I. Fit results for cD and cE for various cutoffs of the

Vlow k derived from the Argonne v18 potential [for (a), (b), and (!)
see text]. The strength of the 2! exchange part is determined by

c1=!0.76 GeV
!1, c3=!4.78 GeV

!1, and c4=3.96 GeV
!1 [21].

" "fm!1# cD cE

1.0 3.621 5.724

1.3 11.889 2.265

1.6 2.080 0.230

1.9 !1.225 !0.405

2.5"a# !0.560 !0.707

2.5"b# !3.794 !1.085

3.0(!) !7.500 !2.151
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The procedure for the determination of cD and cE is the same as for chiral interactions.

Of course, this has to be done for several cutoffs. 

We chose the range 1.0 to 3.0 fm-1.

Note the perturbativity of the 3NF calculation for  Λ < 2.0 fm-1.



RG for nuclear potentials

and that this is a powerful tool to isolate missing parts in

effective interactions. Furthermore, we have extended Vlow k

by the leading chiral 3N force and fitted the two unknown

parameters to the 3H and 4He binding energies. We assessed

the strength of the 3N force by calculating expectation values

of its individual parts. By requiring that not only the sum, but

also the individual parts are of natural size, we found that our

ansatz for the 3N force is reliable for cutoffs !"2 fm!1. It
turned out that the 3N force contribution can be treated per-

turbatively for this range of cutoffs. This completes a soft

nuclear interaction model, which will be important for many-

body calculations. Applications to symmetric nuclear matter

are in preparation.
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TABLE II. Expectation values of the kinetic energy !T", 2N interaction !Vlow k", 2# exchange part of the 3N force (c terms), and D and
E term for 3H and 4He [for (a), (b), and (*) see text]. All energies are in MeV.

! !fm!1"

3H 4He

T Vlow k c terms D term E term T Vlow k c terms D term E term

1.0 21.06 !28.62 0.02 0.11 !1.06 38.11 !62.18 0.10 0.54 !4.87

1.3 25.71 !34.14 0.01 1.39 !1.46 50.14 !78.86 0.19 8.08 !7.83

1.6 28.45 !37.04 !0.11 0.55 !0.32 57.01 !86.82 !0.14 3.61 !1.94

1.9 30.25 !38.66 !0.48 !0.50 0.90 60.84 !89.50 !1.83 !3.48 5.68

2.5!a" 33.30 !40.94 !2.22 !0.11 1.49 67.56 !90.97 !11.06 !0.41 6.62

2.5!b" 33.51 !41.29 !2.26 !1.42 2.97 68.03 !92.86 !11.22 !8.67 16.45

3.0(!) 36.98 !43.91 !4.49 !0.73 3.67 78.77 !99.03 !22.82 !2.63 16.95
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The first consistency check: Is the order of magnitude of the individual 3NF terms 
in agreement with the EFT estimate                                        ?

The contribution seems to be unnaturally large in the regime, where the 3NF 
becomes non-perturbative and vlowk does not agree with the EFT interaction!
      (be careful interpreting results at these cutoffs)

But in the region, where the 3NF is perturbative, it works out fine, 
   e.g. for D-term in 4He at 1.3 fm-1:

V3NF = VNN ×
m3

π

Λ3

V3NF = VNN ×
m3

π

Λ3
≈ 12 MeV.



RG for nuclear potentials

This natural size also shows up in the natural coupling constants.
For this figure, we rescale cD and cE  properly.

It is remarkable that cD and cE are natural even for for large cutoffs.



1 2 3 4 5 6 7 8
1.5

1.6

1.7

1.8

1.9

2

r
n
(
3
H) vlowk-av18

r
p
(
3
H) vlowk-av18

r
n
(
3
H)  bare AV18

Expt r
p
(
3
H)

r
p
(
3
H)  bare AV18

Expt r
p
(
3
He)

Λ [fm-1]

rm
s 

[f
m

]

RG for nuclear potentials

The binding energies are described by construction. 
Let’s look at the charge radius as an example, e.g. for the 3N system.
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RG for nuclear potentials

- Cutoff independence is reached for Λ > 1.6 fm-1. 

- The results are in good agreement with the experimental values!
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Fig. 6. Hartree–Fock (left figure) and Hartree–Fock plus dominant second-order contributions (right figure) calculated

from Vlowk and V3N for various cutoffs. Details of the approximate second-order calculations are given in the text.

Table 1. Finally, we note that all Hartree contributions vanish for the leading-order chiral 3N

interaction due to their spin–isospin structure.

In Fig. 6, we present Hartree–Fock results for the energy per particle in symmetric nuclear

matter calculated from Vlow k and V3N for various cutoffs. The remaining integrals in Eqs. (22),

(23), and (26) were calculated numerically. The Hartree–Fock results show that nuclear satu-

ration is due to 3N forces when model-independent, low-momentum NN interactions are used.

As can be seen from the Vlow k results in Fig. 6, the effects of 3N forces is very small at low den-

sities kF ! 0.8 fm−1. At the Hartree–Fock level, we find a minimum of E/A ≈ −(2.5–8) MeV

for Fermi momenta kF ≈ (1.1–1.3) fm−1 over the cutoff range considered. It is quite promising
that nuclear matter saturates in the Hartree–Fock approximation for low-momentum NN and 3N

interactions, as conventional NN and 3N interactions require complicated nonperturbative treat-

ments to achieve binding. However, we have not yet formulated a power counting appropriate

for finite density that prescribes these ingredients at leading order.

As can be seen from Table 2, the dominant 3N contributions are due to the 2π -exchange

interaction. For kF = 1.2 fm−1 and Λ = 1.9 fm−1, the 3N Hartree–Fock expectation values

are E
(1)
E /A = 1.2 MeV, E

(1)
D /A = −0.8 MeV and E

(1)
c /A = 5.6 MeV. The repulsive single-

exchange c-terms are more than a factor two larger than the attractive double-exchanges. The

dominance of the single-exchange terms holds for other densities and cutoffs as well.

Next, we compute the dominant second-order contributions to the energy per particle. The

approximate second-order calculation is carried out in two steps. First, we convert the 3N force

into a density-dependent NN interaction V̄3N by summing the third particle over occupied states

in the Fermi sea,

〈12|V̄3N|1′2′〉 = Trσ3,τ3

∫
dk3

(2π)3
nk3fR(123)fR(1′2′3)〈123|V3N|1′2′3〉. (29)

A first-order calculation of E(1) using V̄3N includes the single-exchange contributions of the

Hartree–Fock calculation with V3N. As defined in Eq. (29), V̄3N has an inconvenient dependence

on the total pair momentum P in the regulator. To simplify calculations, we approximate V̄3N by

using a regulator that depends only on the relative pair momenta, while implicitly including the

Summary RG for nuclear potentials

- The model independence of “vlowk” motivates a strong connection between chiral 
   EFT interactions and “vlowk” at small cutoffs.

- There is a practical way to augment “vlowk” interactions by 3NF’s !

  The contribution  of 3NF’s is reasonable for small cutoffs and the 
   similarity of EFT and “vlowk” suggests that the combination is consistent.

- The interaction can be applied to many-body systems, 
   e.g. to nuclear matter


